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Exact and approximate solutions are presented for the stationary heat-conduction 
problem for a cylinder with a foreign inclusion for a discontinuous boundary con- 
dition of the first kind. Limits of applicability are set for the approximate 
solutions. 

Glued connections, weld butts of solid bodies, bonding plate and shell elements are mod- 
eled by different fine inclusions. To describe the thermal processes in such bodies, the 
model of nonideal contact between solids [1-4] or a continual model for bodies with fine in- 
clusions [5, 6] are used. We analyze the limits of applicability of these models in:the simp- 
lest example. To this end we consider an infinite cylinder of radius ra that contains a for- 
eign inclusion in the form of a coaxial thin cylindrical shell of thickness 2h and middle sur- 
face radius R. A discontinuous boundary condition of the first kind is given on the cylinder 
side surface r = rz, 

We have the heat-conduction equation 

and boundary conditions 

1 O [rX(r) Ot ]+X(r)----O2t : 0  (1) 
r Or [ Or J. az= 

{ ot II . o  (2) 11 r . ~., ::: toN (z), t l~_ o ~ ~ ,  t, Oz " 

to determine the stationary temperature field that occurs here, where N(z) = S_(z + d) - 
S+(z -- d), and S• are asymmetric unit functions [7]. 

The heat-conduction coefficient A(r), which is a function of the radial coordinate r, is 
represented in the form 

~ (r) = ~ + (~0 - -  ~ )  N,  (r, h), (3)  

where %o, ~, are, respectively, the heat-conductlon coefficients of the inclusion and the main 
material, and N,(r, h) = S_(r -- R + h) -- S+(r -- R-- h). 

Substituting (3) into (i) and executing the manipulations needed, we find 

r 0f ] 
at =: (I - -  KF') i at a_ (r - -  R -I- h) - -  ~+ ( r  - -  R - -  h) , ( 4 )  

Of Ir=R--'~+o at" r=R+h--o 

where K% = %I/Ao is the criterion characterizing the relative heat conduction of the main 
material with respect to the inclusion [8] 

0 2 ! a a 
a• A=  a r  2 + - - - - 4  r Or Oz = 

A p p l y i n g  a F o u r i e r  t r a n s f o r m  i n  z t o  ( 4 )  a n d  ( 2 ) ,  w e  o b t a i n  

dZ[ 1 c~ ~z~ = f (r), 
dr 2 -l- r dr 

(5) 
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where 

" 2"' sin ~d "tl,=o =~ oo, ~r=r, = to l//'/ # ; ' 

- '[1~7 8_-R h)d[ --R--h)]. 
/ ( r ) = ( 1 -  K ,  )L--aT-I,=R-~+o (' + --"-d' i- lr=R+h-o 6+ (r  

The solution of the boundary-value problem (5) and (6) has the form 

/ / / -2-  sin ~cif~(r, I.q) 
t (r, ~) = to --f- ~ (r.,, ill) ' 

where 

(6) 

(7) 

e (r, I;I) = 1o (1~1 r) + (1 - -  K~ -])  I;I < ( R - -  h) 11 (~_) .Q1 (r, [;I, R - -  It) )< 

x [ S _  (r - -  R + h)  - -  (R + h){It (;+) + (K~-- 1) $_I, (~-)[11 (;+) Kt)(;-) @ 

q-- K ,  (.~+) lo (~-)]} Ot (r, I~l, R + h) S+ (r - -  R - -  h) > ; 

fix (r, 151, ~.) --=- Io (I;I r) K,, (I.q ~) - -  Ko (I;I r) 1o (t;I U; I;l+- = I;i (R _ h); 

Iv(~) , Kv(~) are  modified Bessel functions (v = 0, i). 

Using the inversion formula and the convolution theorem [9], we find the solution of the 
heat-conduction problem for the cylindrical body under consideration with the inclusion in the 
form 

tr(r, z ) =  2lo ~ f~(r, ~) sin~dcos~zd$. (8) 
a b' ;fl(r..,  ~) 

When the inclusion thickness 2h is small compared with the other dimensions, we apply the 
approach proposed in [5, 6]. To do this we introduce the reduced heat conduction of the in- 
clusion Ao = 2Aoh and we use the Dirac delta-function approximation [5] 

and the identity 

Then (i) 

8 (r-- R) == lira 
I~o 2h 

N,  (r, h) 

1 [ (r) 6 (r - -  R) = ~ I[ (R + O) + [ (R - -  0)] 6 (r - -  R). 

is rewritten in the following manner 

[ ) ( i*i i At --v ( ~ *l R at 6 ' ( r - - R )  , = 8 (r - -  1"?) Jr- ~ r=R (9) 

where 

? = Ao(1--KF')kTI; ( 0t )*] := 1 [ Ot I -t- Ol !; 

O~t "* 1 [ O~t O~t ] 
--~z2 ) r=R ---- 2 [ Oz z r=R+0 + ~ r=R--OJ" 

By using the Fourier integral transform, the solution of the boundary-value problem (9) 
and (2) takes the form 

t(r, z )= 2to ~ (1)(r, ~) sin~dcos~zd~, (10)_ 
z ~ N ) ( r . ,  ; )  

where 
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@(r, ~ ) =  (1 + - -~ ) lo ( rd ' )q - - ?~ZR[ lo (~ r ) r  

,p1 (~) = 1o (~R) Ko (~R) h (;R) K, ( ~ ) - -  - -  
2R 

~ (~) = I0 ~ (;R) + t~ (;R); 

~); 

I 
1, r>R 

S(r--R) = 0,5, r = R  is  the symmetric un i t  Heaviside func t ion .  
[0, r < R  

A solution of the one-dimensional nonstationary heat-conduction problem for a system of 
two plates and a two-dimensional problem for a space witha foreign cylindrical inclusion has 
been obtained in [4] in an approximate formulation in the case of a small intermediate layer 
thickness. Conditions of nonideai thermal contact are considered here. 

To compare with the solutions of the form (8) and (I0) obtained, we present the solution 
of the heat-conduction problem for a cylinder with a foreign inclusion by considering that 
conditions of nonideal thermalcontact hold here [i-4], 

We assume that two cylindrical bodies are connected by a butt by using an intermediate 
layer of thickness 2h and heat conduction %o. The temperature of the outer cylinder is de- 
noted by ta in the domain R ! r ~ ra and the inner by tx (0 ~ r < R). The boundary and con- 
tact conditions have the form 

[ Ao O2(h+G)Or,. 2~1( OrlOn_ Ot~O~_ )][r=R =0,  (11) 

02(tx--t') --6L, ( 06 Ot2 '~][ _ 12  (tl--t,)l,_R, (12) 
Ao Or~ \-S;-r + -(r--r  )_ll~=R- ro - 

tllr=0 4= oo, ti]r=r, = ton (z), 

where ro = 2h/lo is the thermal resistivity. 

Setting Ao § 0 in the conditions (Ii), we will have in place of (Ii) 

06 I 
( OtlOr Ol~Or )'r=R =0,  (ti--tOlr=R=~xro Or It=R" (13) 

-There fo re ,  each of the condi t ions  (11) and (13) i s  an appropr ia te  extension of the idea l  
thermal contact conditions. 

The tx and t= satisfy stationary heat-conduction conditions in the domans 0 < r < R, R < 
r < Ea 

At~ = 0 (i = 1, 2). (14). 

By using the Fourier integral transform in z, the expressions for the transforms ~x and 
~a, satisfying the transformed boundary and contact conditions (ii) and (12), will be repre- 
sented in the form 

~ (r, ~) = ~0 ~ ~ r 2 sin ~dI0 (1~1 r) 
V ;a (ro, 1~1) 

/ - ' 6 -  sin ~dA (r, I;I) ?~(r, ~)=to  l /  ~_ . 
;A (r=, I;I) V ~ L  

(15)' 

where 

\ ro l �9 . 
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Fig. I. Dimensionless temperature distribution for R/r~ = 0.5, 
h/r2 = i0-2: I) along the radial coordinate: a) z/d = 0, i) d/ 
r2 = 0.5; 2) d/ra = i; 3) d/r2 = 2, b) z/d = I; i) d/r2 = 2; 2) 
d/r2 -- i; 3) d/rz = 0.5; II) along the axial coordinates: i) 
d/r2 = 0.5; 2) d/r2 = i; 3) d/r2 = 2, 

r 
-- 21o (l~l r)] 12~.ksK1 (l~l R) I, (l~[ R) + 

L .  

(16) 

+Ao~; 2 Ao~'-+- 12 Io(I~IR)Ko(I~[R) + 3 ; ~ I A o ~ + - - R -  A.~2+ . 
r o �9 F o 

In the case of the contact conditions (13), the expression a(r, [KI) is written in the 
following way 

A (r, Ir 1o (ir r) + 2h~._____~R 111 (1r R) Ko (1r r) + K~ (1r R) Io (ir r)]. (17) 
Ka 

We obtain respectively for t. and t2 

t1(r z) % f l~(l~fr) sinCdcos~zdr 
CA (r~, ~) " (18) 

t2(r, z )=  2 t ~  A(r, ~) sin~dcos~zd~; (19) 
~' r~A (r~, ~) 

where A(r, ~) is represented by (16) or (17) depending on the kind of contact conditions. 

Using the ES-1060 electronic computer, numerical investigations were performed for the 
temperature field by means of (8), (i0), (18) and (19), where a set of programs was compiled 
which was approved for the OS ES. For the calculations we took %~/~o = 0,25, 

Results of investigating the dimensionless temperature t/to are represented in Fig. i, 
The solid lines correspond to the exact solution determined by (8), and the dashes to the tem- 
perature calculated by means of (i0), the dash-dot curves correspond to the case of general 
contact conditions (ii) and the dash with two dots to Ao § 0, i.e,, the thermal contact con- 
ditions taken in the form (13). 
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F i g .  2 .  Change  i n  r e l a t i v e  e r r o r  e a s  a f u n c t i o n  o f  t h e  p a r a m -  
e t e r  H: a) d/r2 = 1; R/r2 = 0.5; z/d = 0, i) r/r2 = 0; 2) r/ 
r2 = 0.9; b) d/r2 = i; R/r2 = 0.5; r/r2 = 0.5, i) z/d = 0; 2) 
z/d = i, c) d/r2 = i; r/r2 = 0.5; z/d = 0, i) R/r2 --0.25; 2) 
R/r2 = 0.5; 3) R/r2 = 0.75, d) R/r~ = 0.5; r/r2 = 0.5; z/d = 0, 
i) d/r2 = 0.5; 2) d/r2 = i; 3) d/r2 = 2. 

From the results of the investigations the followingcan be noted: The width of the local 
heating zone exerts noticeable influence on the nature of the temperature distribution. Thus, 
for instance, the maximal difference between the values of the dimensionless temperature at 
the side surface in the local heating zone and at the point rl/r2 = 0.5 is 0.02 for d/r2 = 2 
while this difference is 0.32 for d/r2 = 0.5. The maximal divergence between the temperature 
values determined by the fine inclusion model and with the nonideal thermal contact taken 
into account is 3.9% but the difference between the exact solution and a solution of the form 
(I0) is not more than 2%. It is established that a change in the parameters h/r2 (in the I0 -s- 
10 -2 band) and R/r~ (in the 0.1-0.75 band) exerts no substantial influence on the difference 
between the temperature values expressed by (8), (i0), (18) and (19). In the case of nonideal 
thermal contact conditions (ii), for selected values of the parameters the temperature jump 
at the point r = R is manifest only in the second symbol after the decimal for d/r2 = 0.5; 
later as the parameter d/r2 characterizing the magnitude of the local thermal action zone in- 
creases, this difference is observed only in the fourth place after the decimal. 

The solid lines inFig. 2 correspond to values of the relative error ~ = (tT--t)/tT.100% be- 
tween the exact solution and the solution determined by means of the model of fine inclusions; 
the dashed and dash--dot curves, respectively, correspond to the errors between the exact solu- 
tion and the solutions that correspond to the nonideal thermal contact conditions (ii) and 
(13). 

As computations show, the error in determining the temperature by using approximate ap- 
proaches will grow as the quantity R/r2 increases, ioe., the parameter characterizingthe 
remoteness of the foreign inclusion from the local thermal action zone. For H ! I0 -a the 
relative error by all the approximate approaches does not exceed 1%. The numerical investi- 
gations performed show that as the parameter H grows the error in determining the temperature 
by all the approximate schemes considered here will grow. 
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NOTATION 

t, temperature; r, z, radial and axial coordinates; 2h, thickness of the inclusion; and 
~(~), Dirac delta function. 

Io 
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3. 
4. 
5. 
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NUMERICAL-ANALYTICAL METHOD OF SOLVING THE NONLINEAR HEAT-CONDUCTION 

PROBLEM FOR A DOUBLY CONNECTED VARIABLE-THICKNESS PLATE 

A. I. Uzdalev and E. N' Bryukhanova UDC 536.21 

The method permits construction of an approximate solution in an analytically 
closed form on each of the radial rays into which the plate domain is separated. 

i. We have an is, tropic plate whose external L, and internal L2 contours are described 
by equations in a dimensionless polar coordinate system r, 8: 

r=rv[l+e~(cosm~O+a~cos2m~O)], v = l ,  2, (1) 

where ~ = i corresponds to the external and ~ = 2 to the internal contours, r~, e~, m~, a~ are 
parameters, and le~l < i, ]av] < i, r9 < i. 

The plate thickness h(r, 0) varies according to the law 

h(r, 0) = H(r)P(@), .(2) 
where H(r) and P(e) are given functions. 

Boundary conditions of the first kind are satisfied on the side surfaces, i.e., 

T = T ~ ( O )  on L~, v =  1, 2. (3) 

Here the period of the function T~(@) equals 2~/ko, where ko is a positive integer. 

Let us consider the foundation of the plate heat insulated. The thermal characteristics 
of the material depend on the temperature. 

The heat-conduction differential equation for a function of the temperature T has the 
form [i] 

0 (rh~ OT)-q- l-i- 0---~ 
Or dr r O0 

Here ~ = ~(T) is the heat-conduction coefficient. 

Introducing the Kirchhoff variable 

( hx o7" ~ = o (4) 

00 j 

L 
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